Hall Ticket Number:

Code No.: 22315 AS

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (E.C.E.) II Year II-Semester Advanced Supplementary Examinations, June/July-2017

Pulse, Digital and Switching Circuits

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Show that a Lowpass RC circuit acts as an integrator.
- 2. Mention the effects of diode characteristics on clamping voltage.
- 3. Compare conventional Bi-stable Multi-vibrator and Schmitt trigger circuits.
- 4. Sketch all the wave forms of collector coupled Mono-stable Multi-vibrator when it is in stable and quasi stable state.
- 5. Realize EX-OR and EX-NOR gates using minimum number of NAND gates.
- 6. Implement a half adder with two 2x1 multiplexers and NOT gates.
- 7. Write the function for the carry outputs of each stage of a four bit Carry Look Ahead adder.
- 8. Construct JK Flip flop using D flip flop, a 2 to 1 multiplexer and an inverter.
- 9. Differentiate among Synchronous and Asynchronous sequential circuits.
- 10. A machine has to detect a sequence 1010, obtain its state diagram. (over lapping allowed).

Part-B $(5 \times 10 = 50 \text{ Marks})$

- 11. a) Explain the operation of an RLC circuit when a step input is applied at its inputs (with [5] initial condition equal to be zero) as a function of K.
 - b) The limited ramp is applied to an RC differentiator as shown in fig. 11 b. Draw to scale [5] the output wave form for the cases T = RC, T = 0.2 RC & 5 RC.

- 12. a) Derive an expression for gate / pulse width of an emitter coupled Mono-stable Multivibrator. [4]
 - b) Describe the operation of a Schmitt trigger circuit and derive expressions for UTP and [6] LTP.
- 13. a) Express the compliment of the following function in product of sum form F(A,B,C,D) [3] = $\sum (3,5,9,11,15)$.
 - b) Draw a logic diagram using only two input NOR gates to implement the following [4] function f(A,B,C,D) = (A XNOR B) (C XOR D).
 - c) Implement the Boolean function $F(A,B,C,D) = \sum (1,3,4,11,12,13,14,15)$ using [3] Multiplexer.

[6]

14. a) Reduce the given state diagram and perform state assignment.

	b) Draw the truth table of priority encoder and differentiate it with normal encoder.	[4]
15.	a) Design 4-bit UP/DOWN counter. Use one control signal to select either to perform UP counting or DOWN counting. Mealy type of modelling and JK flip-flops has to be used.	[6]
	b) Draw the block diagram of universal shift register.	[4]
16	a) Explain about linear and non-linear wave shaping circuits.	[5]
10.	b) Design a sweep circuit using UJT to trigger TRIAC.	[5]
17.	. Write short notes on any two of the following:	[5]
	a) Static Hazards	[5]
	b) Ring counterc) Designing procedure for Mealy machine.	[5]

ശ്രദ്ധങ്ങളാളാ