

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. (E.C.E.) II Year II-Semester Advanced Supplementary Examinations, June/July-2017

Pulse, Digital and Switching Circuits
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. Show that a Lowpass RC circuit acts as an integrator.
2. Mention the effects of diode characteristics on clamping voltage.
3. Compare conventional Bi-stable Multi-vibrator and Schmitt trigger circuits.
4. Sketch all the wave forms of collector coupled Mono-stable Multi-vibrator when it is in stable and quasi stable state.
5. Realize EX-OR and EX-NOR gates using minimum number of NAND gates.
6. Implement a half adder with two 2×1 multiplexers and NOT gates.
7. Write the function for the carry outputs of each stage of a four bit Carry Look Ahead adder.
8. Construct JK Flip flop using D flip flop, a 2 to 1 multiplexer and an inverter.
9. Differentiate among Synchronous and Asynchronous sequential circuits.
10. A machine has to detect a sequence 1010 , obtain its state diagram. (over lapping allowed).

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) Explain the operation of an RLC circuit when a step input is applied at its inputs (with initial condition equal to be zero) as a function of K .
b) The limited ramp is applied to an RC differentiator as shown in fig. 11 b . Draw to scale the output wạve form for the cases $\mathrm{T}=\mathrm{RC}, \mathrm{T}=0.2 \mathrm{RC}$ \& 5 RC .

12. a) Derive an expression for gate / pulse width of an emitter coupled Mono-stable Multivibrator.
b) Describe the operation of a Schmitt trigger circuit and derive expressions for UTP and LTP.
13. a) Express the compliment of the following function in product of sum form $F(A, B, C, D)$ $=\sum(3,5,9,11,15)$.
b) Draw a logic diagram using only two input NOR gates to implement the following function $f(A, B, C, D)=(A$ XNOR B $)(C$ XOR D $)$.
c) Implement the Boolean function $F(A, B, C, D)=\sum(1,3,4,11,12,13,14,15)$ using Multiplexer.
14. a) Reduce the given state diagram and perform state assignment.

Fig. 14 a
b) Draw the truth table of priority encoder and differentiate it with normal encoder.
15. a) Design 4-bit UP/DOWN counter. Use one control signal to select either to perform UP counting or DOWN counting. Mealy type of modelling and JK flip-flops has to be used.
b) Draw the block diagram of universal shift register.
16. a) Explain about linear and non-linear wave shaping circuits.
b) Design a sweep circuit using UJT to trigger TRIAC.
17. Write short notes on any two of the following:
a) Static Hazards
b) Ring counter
c) Designing procedure for Mealy machine.

